Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Microbiol Resour Announc ; : e0002024, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591919

RESUMEN

In this article, we present a comprehensive analysis of the genome sequence of Escherichia coli isolate ACESH02881hy, which has a 5,071,463-bp genome size. The strain was isolated from patient who visited the Pediatrics People's Hospital of Pingguo, China, 2021.

2.
Biomaterials ; 308: 122566, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38603824

RESUMEN

Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.

3.
Adv Sci (Weinh) ; : e2308381, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447173

RESUMEN

3D bioprinting techniques have enabled the fabrication of irregular large-sized tissue engineering scaffolds. However, complicated customized designs increase the medical burden. Meanwhile, the integrated printing process hinders the cellular uniform distribution and local angiogenesis. A novel approach is introduced to the construction of sizable tissue engineering grafts by employing hydrogel 3D printing for modular bioadhesion assembly, and a poly (ethylene glycol) diacrylate (PEGDA)-gelatin-dopamine (PGD) hydrogel, photosensitive and adhesive, enabling fine microcage module fabrication via DLP 3D printing is developed. The PGD hydrogel printed micocages are flexible, allowing various shapes and cell/tissue fillings for repairing diverse irregular tissue defects. In vivo experiments demonstrate robust vascularization and superior graft survival in nude mice. This assembly strategy based on scalable 3D printed hydrogel microcage module could simplify the construction of tissue with large volume and complex components, offering promise for diverse large tissue defect repairs.

4.
Adv Rheumatol ; 64(1): 19, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449057

RESUMEN

OBJECTIVES: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which might trigger cartilage, bone damage, and disability. Recent studies have suggested that Tetramethylpyrazine (TMP), an alkaloid monomer isolated from the rhizome of the traditional herbal medicine Ligusticum wallichii Franch, exerts a broad spectrum of pharmacological properties, containing anti-inflammatory. This study aimed to analyze the role and underlying mechanism of TMP in RA. METHODS: Under Hypoxia condition, RA-Fibroblast-like synoviocyte (FLS) were treated with TMP at different doses. Cell viability, proliferation, cell cycle progression, and migration were detected using Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry assay, wound healing assay, and transwell assay. Cyclin D1, Proliferating cell nuclear antigen (PCNA), Matrix metalloproteinase-2 (MMP2), MMP9, and hypoxia-inducible factor-1α (HIF-1α) protein levels were measured using western blot assay. Interleukin-6 (IL-6) and IL-8 were evaluated using ELISA. Circular RNA (circRNA) hsa_circ_0005178 (circCDC42BPB), CDC42BPB, and HIF-1α expression were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Binding between HIF-1α and CDC42BPB promoter was predicted by JASPAR and verified using dual-luciferase reporter and Chromatin immunoprecipitation (ChIP) assays. RESULTS: TMP might hinder FLS proliferation, cycle progression, migration, and inflammatory response under hypoxic conditions. CircCDC42BPB expression was increased in RA patients and RA-FLSs treated with hypoxia, while its level was obviously reduced in RA-FLSs treated with hypoxia and TMP. TMP might abolish hypoxia-induced circCDC42BPB expression. Upregulation of circCDC42BPB might partially overturn the repression of TMP on hypoxia-caused RA-FLS damage. TMP might regulate circCDC42BPB level via HIF-1α in RA-FLSs under hypoxic conditions. CONCLUSION: TMP might block RA-FLS injury partly via regulating the HIF-1α- circCDC42BPB pathway, providing a promising therapeutic target for RA.


HIGHLIGHTS: • TMP suppressed hypoxia-induced RA-FLS growth and inflammatory response.• TMP might repress circCDC42BPB expression in RA-FLSs under hypoxic conditions.• TMP might inhibit HIF-1α-induced circCDC42BPB transcription under hypoxic conditions.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Metaloproteinasa 2 de la Matriz , Pirazinas , Artritis Reumatoide/tratamiento farmacológico , Proliferación Celular
5.
Adv Mater ; : e2401271, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549262

RESUMEN

The advancement of aqueous micro-supercapacitors offers an enticing prospect for a broad spectrum of applications, spanning from wearable electronics to micro-robotics and sensors. Unfortunately, conventional micro-supercapacitors are characterized by low capacity and slopy voltage profiles, limiting their energy density capabilities. To enhance the performance of these devices, the use of 2D MXene-based compounds has recently been proposed. Apart from their capacitive contributions, these structures can be loaded with redox-active nanowires which increase their energy density and stabilize their operation voltage. However, introducing rigid nanowires into MXene films typically leads to a significant decline in their mechanical properties, particularly in terms of flexibility. To overcome this issue, super stretchable micro-pseudocapacitor electrodes composed of MXene nanosheets and in situ reconstructed Ag nanoparticles (Ag-NP-MXene) are herein demonstrated, delivering high energy density, stable operation voltage of ≈1 V, and fast charging capabilities. Careful experimental analysis and theoretical simulations of the charging mechanism of the Ag-NP-MXene electrodes reveal a dual nature charge storage mechanism involving ad(de)sorption of ions and conversion reaction of Ag nanoparticles. The superior mechanical properties of synthesized films obtained through in situ construction of Ag-NP-MXene structure show an ultra stretchability, allowing the devices to provide stable voltage and energy output even at 100% elongation.

6.
Toxics ; 12(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535914

RESUMEN

Ruthenium is required to separate from high-level liquid waste (HLLW) because Ru is a valuable resource and is negatively influential on the vitrification process of HLLW. However, the separation of Ru is very challenging due to its complicated complexation properties. In this study, the adsorption and desorption characteristics of ruthenium on a synthesized SiPyR-N3 (weak-base anion exchange resin with pyridine functional groups) composite were investigated in nitric acid and nitrite-nitric acid systems, respectively, and the adsorption mechanism was explored. The experimental results showed that SiPyR-N3 has a significantly better adsorption effect on Ru in the nitrite-nitric acid system than in the nitric acid system, with an increase in the adsorption capacity of approximately three times. The maximum adsorption capacity of Ru is 45.6 mg/g in the nitrite-nitric acid system. The SiPyR-N3 possesses good adsorption selectivity (SFRu/other metal ions is around 100) in 0.1 M NO2--0.1 M HNO3 solution. The adsorption processes of Ru in the two different systems are fitted with the pseudo-second-order kinetic model and Langmuir model for uptake kinetics and adsorption isotherms, respectively. The results obtained from the FT-IR, XPS, and UV absorption spectrometry indicate that NO2- was involved in the adsorption process either as a complexing species with the metal ions or as free NO2- from the solution. A 0.1 M HNO3 + 1 M thiourea mixed solution shows effective desorption performance, and the desorption efficiency can reach 92% at 328 K.

7.
Biotechnol J ; 19(2): e2300648, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403408

RESUMEN

L-Cysteine production through fermentation stands as a promising technology. However, excessive accumulation of L-cysteine poses a challenge due to the potential to inflict damage on cellular DNA. In this study, we employed a synergistic approach encompassing atmospheric and room temperature plasma mutagenesis (ARTP) and adaptive laboratory evolution (ALE) to improve L-cysteine tolerance in Escherichia coli. ARTP-treated populations obtained substantial enhancement in L-cysteine tolerance by ALE. Whole-genome sequencing, transcription analysis, and reverse engineering, revealed the pivotal role of an effective export mechanism mediated by gene eamB in augmenting L-cysteine resistance. The isolated tolerant strain, 60AP03/pTrc-cysEf , achieved a 2.2-fold increase in L-cysteine titer by overexpressing the critical gene cysEf during batch fermentation, underscoring its enormous potential for L-cysteine production. The production evaluations, supplemented with L-serine, further demonstrated the stability and superiority of tolerant strains in L-cysteine production. Overall, our work highlighted the substantial impact of the combined ARTP and ALE strategy in increasing the tolerance of E. coli to L-cysteine, providing valuable insights into improving L-cysteine overproduction, and further emphasized the potential of biotechnology in industrial production.


Asunto(s)
Cisteína , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cisteína/metabolismo , Temperatura , Mutagénesis , Fermentación
8.
J Hazard Mater ; 467: 133741, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341887

RESUMEN

Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.

9.
Environ Res ; 249: 118428, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325788

RESUMEN

Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.

10.
J Environ Manage ; 353: 120283, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38330842

RESUMEN

The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N2 adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.


Asunto(s)
Metales de Tierras Raras , Neodimio , Disprosio , Hidrogeles , Adsorción , Alginatos , Espectroscopía Infrarroja por Transformada de Fourier , Fosfatos
11.
Retina ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38232294

RESUMEN

PURPOSE: To evaluate the surgical anatomical and functional results of "viscoelastic agent pool" technique-assisted stability of inverted internal limiting membrane (ILM) flap in macular hole retinal detachment (MHRD). METHODS: The innovative surgical technique was carried out on 10 patients with MHRD. The primary outcomes included best corrected visual acuity (BCVA) after surgery, rate of closure of MH, retinal reattachment, and occurrence of complications. RESULTS: The mean age of the individuals was 67.70±8.75 (range, 55-84) years; mean axial length, 29.34±1.53 (range, 27.10-30.93) mm; mean corrected MH diameter, 685.30± 345.65 (range, 172-1325) µm; and average follow-up period, 6.01±1.71 (range, 3.10-8.4) months. In six eyes (60%), the postoperative BCVA showed improvement. All patients had MH closure, and the retinal reattachment rate was 100%. No postoperative complications were noted. CONCLUSIONS: The "Viscoelastic agent pool" technique, an innovative surgical approach designed to enhance the stability of the ILM flap, serves as an effective adjunctive procedure for the inverted ILM flap technique. It presents a viable option for patients with MHRD.

12.
Chemosphere ; 350: 141184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215834

RESUMEN

Efficient recognition, separation and recovery of palladium from high-level liquid waste (HLLW) not only helps the safe, green and environmentally friendly disposal of nuclear waste, but also is an essential important supplement to overcome the growing shortage of natural palladium resources. Herein, a novel silica-based functional adsorbent named 2AT-SiAaC was prepared by a two-step method, i.e., grafting of 2-aminothiazole (2AT) via the amidated reaction after in-situ polymerization of acrylic monomers on porous silica. SEM, EDS, TG-DSC, BET and PXRD all proved the successful preparation of 2AT-SiAaC, and it exhibited ultrahigh adsorption selectivity for Pd(II) (Kd (distribution coefficient) ≥ 10,344.2 mL/g, SFPd/M (separation factor) ≥ 613.7), fast adsorption kinetics with short equilibrium time (t ≤ 1 h) and good adsorption capacity (Q ≥ 62.1 mg Pd/g). The dynamic column experiments shows that 2AT-SiAaC achieved efficiently separation of Pd(II) from simulated HLLW, and the enrichment coefficients (C/C0) of Pd(II) was as high as about 14 with the recovery rate nearly 99.9% and basically kept the same performance in three adsorption-desorption column cycle experiments. The adsorption mechanism was analyzed by FT-IR, XPS and DFT calculations, and the ultrahigh selectivity of 2AT-SiAaC was attributed to the preferred affinity of the soft N-donor atoms in 2AT for Pd(II). NO3- ions participated in the adsorption reaction to keep charge balance, and the frontier orbital electron density distribution diagram shows the charge transfer in the process of material preparation and adsorption. To sum up, 2AT-SiAaC adsorbent provided a new insight for precise recognition and efficient separation of Pd(II) from HLLW.


Asunto(s)
Paladio , Tiazoles , Contaminantes Químicos del Agua , Paladio/análisis , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Cinética
13.
Dalton Trans ; 53(4): 1586-1598, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165017

RESUMEN

Accurate separation and efficient recovery of platinum group metals (PGMs, mainly Ru, Rh and Pd) from high level liquid waste (HLLW) is a good choice for clean production and sustainable development of nuclear energy. Herein a novel SDB polymer modified silica-based amine-functionalized composite (dNbpy/SiO2-P) was synthesized for the separation and recovery of PGMs. Laser particle size analysis and BET results clarified the regular spherical and highly interconnected mesoporous structure of dNbpy/SiO2-P which is critical for the separation of PGMs. The removal percent of PGMs were over 99% on the optimized conditions. In addition, dNbpy/SiO2-P showed excellent selectivity (SFPd/M > 3805, SFRu/M > 1705, SFRh/M > 336) and repeatability (≥5). Interestingly, based on the different adsorption and desorption kinetics of PGMs, a double-column strategy is designed to solve the challenge of separating and recovering PGMs from HLLW. The enrichment factors of Pd(II), Ru(III) and Rh(III) reached 36.7, 8.2, and 1.2. The adsorption of PGMs was coordination mechanism and required the involvement of NO3- to maintain charge balance. The specific distribution of elements within the adsorbents and the changes in valence state were analyzed using depth-profiling XPS. Both depth-profiling XPS results and slope analysis revealed that the complex of dNbpy and PGMs is a 1 : 1 coordination structure. Overall, this work fills the gap that PGMs cannot be effectively separated and enriched from HLLW.

14.
Altern Ther Health Med ; 30(1): 83-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820672

RESUMEN

Objective: Pulmonary tuberculosis (PTB) and chronic pulmonary aspergillosis (CPA) have many similarities in clinical symptoms. In patients with etiology-positive pulmonary tuberculosis (EPTB), Aspergillus infection is easily overlooked, and missed diagnosis occurs. We attempted to analyze the clinical characteristics and risk factors of EPTB combined with CPA (EPTB-CPA), and to suggest to clinicians the possibility of CPA in EPTB patients. Methods: 58 patients with EPTB-CPA diagnosed and treated in Wuhan Pulmonary Hospital from April 2021 to March 2022 were retrospectively collected as the case group. According to the age group of the case group, 174 patients with EPTB were randomly selected as the control group at a ratio of 1:3. Multivariate logistic regression analysis was utilized to analyze the risk factors. Results: Multivariate Logistic regression analysis was performed on the pulmonary cavity, chronic obstructive pulmonary disease (COPD), bronchiectasis, emphysema, lung damage, anemia, and hypoproteinemia. Among them, pulmonary cavity (P = .001), COPD (P = .006), and bronchiectasis (P = .020) were statistically significant. Conclusion: Our findings suggest that when EPTB patients present with pulmonary cavities and comorbidities such as COPD or bronchiectasis, clinicians should consider the possibility of CPA. Identifying these risk factors can help improve the accuracy of diagnosis and facilitate early detection and management of EPTB-CPA.


Asunto(s)
Bronquiectasia , Aspergilosis Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Tuberculosis Pulmonar , Humanos , Estudios de Casos y Controles , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/diagnóstico , Aspergilosis Pulmonar/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Tuberculosis Pulmonar/complicaciones
15.
mBio ; 14(5): e0211023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796013

RESUMEN

IMPORTANCE: Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Virus Sincitial Respiratorio Humano/genética , Glucólisis
16.
Heliyon ; 9(9): e19928, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809836

RESUMEN

The integration of big data technology in the manufacturing process has become a norm, and as society's dependence on the digital economy increases, colleges and universities must adjust their teaching methods to cater to their students' needs. In evaluating the success of business-school partnerships, there is a need for common criteria and visualising data analysis results. However, the current educational approach presents some challenges, including a lack of practical experience with software, overemphasis on theoretical concepts, and inadequate training in problem-oriented statistical modeling and big data statistics projects. Industry-education cooperation should be leveraged to enhance the implementation of big data technology and promote its overall development. This paper analyses the shortcomings of traditional talent training models in higher education and proposes incorporating industrial education to address the gaps. The paper aims to bridge the industry-education gap by developing and implementing an Inter-Technology Information Management (ITIM) system for quality education. The ITIM system uses a fuzzy algorithm to evaluate the quality of education and provides various intelligent functional modules, such as group management, financial management, and process-to-process communication. Compared to other integration models, the proposed management system offers superior performance with an industrial education performance accuracy of 98%, an average analysis, and calculation time of 20 ms and a maximum performance efficiency of 98%.By incorporating dynamic analysis of industry education, the experimental results of the talent training model have led to improvements in teaching effectiveness, student learning, and theoretical-applied teaching quality.

17.
ACS Nano ; 17(19): 19087-19097, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37726178

RESUMEN

Uneven zinc (Zn) deposition typically leads to uncontrollable dendrite growth, which renders an unsatisfactory cycling stability and Coulombic efficiency (CE) of aqueous zinc ion batteries (ZIBs), restricting their practical application. In this work, a lightweight and flexible three-dimensional (3D) carbon nanofiber architecture with uniform Zn seeds (CNF-Zn) is prepared from bacterial cellulose (BC), a kind of biomass with low cost, environmental friendliness, and abundance, as a host for highly reversible Zn plating/stripping and construction of high-performance aqueous ZIBs. The as-prepared 3D CNF-Zn with a porous interconnected network significantly decreases the local current density, and the functional Zn seeds provide uniform nuclei to guide the uniform Zn deposition. Benefiting from the synergistic effect of Zn seeds and the 3D porous framework in the flexible CNF-Zn host, the electrochemical performance of the as-constructed ZIBs is significantly improved. This flexible 3D CNF-Zn host delivers a high and stable CE of 99.5% over 450 cycles, ensuring outstanding rate performance and a long cycle life of over 500 cycles at 4 A g-1 in the CNF-Zn@Zn//NaV3O8·1.5H2O full battery. More importantly, owing to the flexibility of the 3D CNF-Zn host, the as-assembled pouch cell shows outstanding mechanical flexibility and excellent energy storage performance. This strategy of producing readily accessible carbon from biomass can be employed to develop advanced functional nanomaterials for next-generation flexible energy storage devices.

18.
Entropy (Basel) ; 25(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37628265

RESUMEN

The variational Bayesian method solves nonlinear estimation problems by iteratively computing the integral of the marginal density. Many researchers have demonstrated the fact its performance depends on the linear approximation in the computation of the variational density in the iteration and the degree of nonlinearity of the underlying scenario. In this paper, two methods for computing the variational density, namely, the natural gradient method and the simultaneous perturbation stochastic method, are used to implement a variational Bayesian Kalman filter for maneuvering target tracking using Doppler measurements. The latter are collected from a set of sensors subject to single-hop network constraints. We propose a distributed fusion variational Bayesian Kalman filter for a networked maneuvering target tracking scenario and both of the evidence lower bound and the posterior Cramér-Rao lower bound of the proposed methods are presented. The simulation results are compared with centralized fusion in terms of posterior Cramér-Rao lower bounds, root-mean-squared errors and the 3σ bound.

19.
RSC Adv ; 13(36): 25518-25528, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37636500

RESUMEN

The emulsions formed by conventional surfactants have poor stability in high temperature and high salinity reservoirs, which limits the fluidity control ability of emulsion flooding systems. Hydroxyl sulfobetaine surfactants have excellent emulsifying properties and can maintain good activity under high temperature and high salinity conditions. In this study, an emulsion synergistic-stabilized by hydroxyl sulfobetaine surfactant LHSB and SiO2 nanoparticles was reported for the first time, and the feasibility of its enhanced oil recovery was investigated. The results show that the stability, temperature and salt resistance of the emulsion were significantly improved after adding nanoparticles, which positively affected the exploitation of harsh reservoirs. The synergistic-stabilized mechanism between LHSB and SiO2 nanoparticles was revealed by the measurements of zeta potential, surface tension and contact angle. Moreover, core flooding experiments reflect the emulsion synergistic-stabilized by LHSB and SiO2 nanoparticles can effectively enhance oil recovery by 11.41%. This study provides an emulsion flooding system with excellent performance for enhanced oil recovery in harsh reservoirs.

20.
J Agric Food Chem ; 71(36): 13409-13418, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37639615

RESUMEN

Microbial production of valuable compounds can be enhanced by various metabolic strategies. This study proposed combinatorial metabolic engineering to develop an effective Escherichia coli cell factory dedicated to L-cysteine production. First, the crucial regulatory modes that control L-cysteine levels were investigated to guide metabolic modifications. A two-stage fermentation was achieved by employing multi-copy gene expression, improving the balance between production and growth. Subsequently, carbon flux distribution was further optimized by modifying the C1 unit metabolism and the glycolytic pathway. The modifications of sulfur assimilation demonstrated superior performance of thiosulfate utilization pathways in enhancing L-cysteine titer. Furthermore, the studies focusing on cofactor availability and preference emphasized the vital role of synergistic enhancement of sulfur-carbon metabolism in L-cysteine overproduction. In a 5 L bioreactor, the strain BW15-3/pED accumulated 12.6 g/L of L-cysteine. This work presented an effective metabolic engineering strategy for the development of L-cysteine-producing strains.


Asunto(s)
Cisteína , Ingeniería Metabólica , Carbono , Escherichia coli/genética , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...